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Abstract

A class of expandable polyhedral structures, the expandohedra, consisting of prismatic faces linked along edges by
hinged plates, provides a model for the swelling of viruses. The finite breathing mode of the expandohedra, apparent in
the model, and from geometric arguments, is not, however, detected by elementary counting techniques. Symmetry
extended mobility criteria show that the breathing motion is part of a set of face mechanisms for many expandohedra.
Numerical analysis using the singular value decomposition of the compatibility matrix confirms the completeness of the
deductions from general symmetry theorems, derived for expandohedra.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Certain viruses having the shape of a truncated icosahedron expand under the effect of pH change in
biological media (Speir et al., 1995). The pentamers and hexamers move apart from each other, rotating but
remaining in contact through protein links. The discovery of this phenomenon calls attention to the
problem of motion of expandable polyhedra.

The characteristics of the virus motion differ from those of another expanding object, the popular toy
known as the Hoberman Sphere™ (Hoberman, 1991). This transforming globe defines an underlying
polyhedron, whose faces preserve their orientation as they expand. In the virus, however, the faces es-
sentially preserve their size but each is subjected to a translation and rotation along its symmetry axes and,
as the virus expands, interstices appear between the faces. Thus, the swelling motion of the virus, although
complex and still incompletely understood, seems to be more similar to a special type of deformation that
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Fig. 1. A cardboard model of an expandable dodecahedron, shown in closed and partially open configurations.

has been studied for honeycombs (Kollar and Hegedis, 1985), and to the motion exhibited by Fuller’s
(1975) jitterbug.

In order to gain a better insight into the virus problem, Kovacs and Tarnai (2000) initiated a study of the
motion of a simpler object: an expandable dodecahedron (Fig. 1). A physical model exhibited the breathing
expansion mode that was expected on intuitive grounds, although paradoxically it turns out that this mode
is not accounted for by mobility analysis using standard techniques.

The expandable dodecahedron suggests a class of similar objects, the expandohedra, which will also be
studied in this paper. These expandable polyhedra have analogues in fullerene chemistry; they model the
leapfrog transformation (Fowler and Steer, 1987), which produces fullerenes with ideal m-electronic
structures. A fullerene, and in fact any convex polyhedron, can be converted into its leapfrog by a two-stage
procedure. If an original fullerene polyhedron is capped on every face, a deltahedron is obtained, and if this
deltahedron is then converted to its dual, a new fullerene polyhedron with three times as many vertices is
obtained. Leapfrogging is a discontinuous process which jumps from one fullerene to another over the
intervening deltahedron. For example, the leapfrog transformation converts a dodecahedron to a truncated
icosahedron. It turns out that this particular transformation can alternatively be described as a continuous
process using Verheyen’s (1989) dipolygonid composed of 30 digons and 12 pentagons, which he denotes by
the symbol 30{2} + 12{5}|31.717474°. The expandohedra provide an alternative continuous description for
this, and for certain other, leapfrog transformations.

The expandohedron can also be considered as a deployable structure providing a large volume expansion.
The fully open expandohedron has a number of mechanisms, see below, but the addition of e.g. locking
hinges (Seffen et al., 1999) would give rigidity to the deployed structure.

This paper has therefore two aims. The first is to provide a detailed analysis of the mobility of the
expandable dodecahedron, and the second is to place the dodecahedron within a general class of ex-
pandable polyhedra, providing general symmetry theorems for their mobility. The paper brings together a
number of different techniques to analyse the kinematics of these novel deployable systems. New features
arise at each level of analysis. Section 2 contains a geometric analysis of the finite breathing motion in a
particular case, the expanding dodecahedron, and identifies by geometric arguments additional sets of
possible infinitesimal motions. Section 3 uses recently developed symmetry techniques (Kangwai and Guest,
1999, 2000; Fowler and Guest, 2000) to find and classify the possible motions of several general classes of
expandohedra; the finite breathing mode is shown to be symmetrically distinct from the mechanisms that
can be found by simple counting. Section 4 reports the results of detailed numerical analysis of open and
closed configurations of particular expandohedra, giving a complete account of the kinematics, and con-
firming the results of the more general symmetry analysis. This combination of techniques proves to be an
effective route to understanding the behaviour of complex kinematic systems.
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2. A physical model of the expandable dodecahedron
2.1. Structure

The expandable polyhedral viruses have the basic property that all pentamers and hexamers are situated
in icosahedral symmetry at any stage of swelling. To simulate the expansion of these viruses, a dodeca-
hedral assembly producing this symmetrical motion was constructed. The cardboard model in Fig. 1
represents a mechanism composed of rigid bodies with hinged connections.

The dodecahedron cardboard model was designed under the following constraints:

(i) the structure consists entirely of equal rigid bodies (pentagonal prisms) and rigid connecting elements
(triangular and rectangular plates);

(i1) all connections between prism and plate, and between plate and plate, are revolute hinges;

(ii1) the whole assembly must have icosahedral rotational symmetry /. As a consequence, all chains of con-
necting elements between adjacent pentagonal prisms are identical and must have a two-fold rotational
symmetry C,;

(iv) all conditions of compatibility should be satisfied in any position during the expansion motion.

In this particular model, regular pentagon-based straight prisms were used, and triangles and rectangles
were used as planar connecting elements. In Fig. 2, two adjacent pentagonal prisms are shown with their
mode of connection. In what follows, the pentagonal prisms will usually be referred to as pentagons, except
when the third dimension of the prism is relevant to the geometrical description.

2.2. Type and range of expansion

A clearly detectable motion of the structure, as built according to the requirements listed above, is a
symmetrical expansion. In this motion, each pentagonal prism rotates about its axis of five-fold symmetry
by the same angle, and simultaneously moves along this axis radially outwards with the same speed, that is,
the pentagons are at equal distance from the centre. Consequently, in any position, the plane of a pentagon
is parallel to that of the same pentagon in the initial position. In other words, all inclination angles between
adjacent pentagonal prisms remain constant. Let this angle be denoted by ¢. If edges BC and DE in Fig. 2
are parallel to the bisector of ¢, then Z4BC and ZDEF are equal to ¢/2. Since the initial configuration is
the regular dodecahedron, ¢ is identical to the angle subtended by an edge of a regular icosahedron on the
unit sphere.

Fig. 2. Two pentagonal prisms and their connection.
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Fig. 3. Simplified network of two pentagonal prisms (showing inner edges and vertices only).

Let the edge length of a regular pentagon be equal to the side BE of the connecting rectangle in Fig. 2,
and let this common length be denoted by a. Additionally, let the circumradius of the pentagon be r.
Consider now the network determined by the inner vertices of the pentagonal prisms, and consider two
adjacent pentagons of centre X and Y (Fig. 3). This is a part of the dipolygonid mentioned earlier. By the
requirement of icosahedral symmetry, the vertices of the pentagons should lie on a sphere of radius R and
centre O, and the adjacent pentagons of centre X and Y should be oriented in accordance with C, sym-
metry. Hence, the C, axis OS bisects the segment (i.e. the digon) BE perpendicularly. Since the pentagon of
centre X translates along, and rotates about, the axis OX, the vertices of this pentagon move on the surface
of a right circular cylinder of radius » and axis OX; and similarly, since the segment (digon) connecting the
two pentagons translates along, and rotates about, the axis OS, its end-points B and £ move on the surface
of a right circular cylinder of radius a/2 and axis OS. Therefore, compatibility is fulfilled if point E lies on
the line of intersection of these two cylinders. Points of this line of intersection determine a relationship
between the angle o of rotation of the connecting segment and the radius R of the circumscribed sphere.
Thus, the motion of this assembly can be described as a function of one parameter. Compatibility is
preserved if this assembly is supplemented in such a way that right prisms are placed on the pentagons,
rectangles are placed on the connecting segments whose planes are passing through point O, and the gaps
between the respective edges of the pentagonal prisms and rectangles are filled by triangles. By the above
argument, the angles between the respective edges of the pentagonal prisms and rectangles do not change
during the motion—planes A4BC and DEF remain parallel to one another, and to their initial position.
Therefore, as it supports this expansion—contraction breathing type of motion, the dodecahedron model is a
finite mechanism.

In order to determine the relationship between o and R, first let us project the centres X, Y, Z of three
mutually adjacent faces of a dodecahedron onto the unit sphere concentric with the dodecahedron (Fig. 4).

/3
/5

Fig. 4. A vertex (B) with three adjacent faces (centres X, Y, Z) shown in spherical projection.
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The arc drawn from the vertex B to the mid-point M of arc XY is perpendicular to arc XY. The cosine rule
for the angles of spherical triangle BMX shows that
co8 LXBM = —cos ZBMX cos ZMXB + sin ZBMX sin ZMXB cos XM, (1)
where XM = ¢/2, ZXBM = /3, /BMX = n/2, /ZMXB = n/5. Hence,
10} n,.n 1 =«
Y = cos— Z = Zcsc=. 2
cos 3 c0s3/s1n5 5Csc% (2)

Now let us project the network of Fig. 3 onto the unit sphere of centre O, and denote the points in
projection with the same letters as in the original. Then, the cosine rule for the sides of triangle XSB yields:

cos BX = cos XS cos SB + sin XS sin SB cos ZXSB, (3)
whence
cos /XSB — cos BX — cos XS cos SB. @)

sin XS sin SB
Here /XSB = o, XS = ¢/2, sinSB = a/(2R), sin BX = BX/BO = r/R = a/(2Rsin(n/5)). Substituting these
expressions into (4), and taking into account (2) and the fact that sin(n/5) = 1/(5 — v/5)/8, we obtain:

255 (8) -1y (8) -

coso = , 5
3-V3 ©)
2
and the inverse relation:
R 1
- 2\/(4+ \/§)cos2a+2cosa\/(5 +2V5)cos?a+ 9 +4V5 + (9 + 3V5)/2. (6)

Since a = 7/2 results in the most compact (dodecahedral) configuration (R = Ry,;,) while oo = 0 in the fully
expanded (truncated icosahedral) one (R = R.x), We can calculate the minimum and maximum values of
R/a: Ryin/a = 1.401; Ry, /a = 2.478. The ratio of these values shows that the circumradius of our model

increases by about 77% during expansion. The volume of the dodecahedron is a3\/ (235 +105V/5)/8 =
7.663a’, and the same for the semi-regular truncated icosahedron is a*((3 + v/5)45/4 — 1/ (15 + 5v/5)/2) =

55.288a*. Thus, the volume of the fully expanded structure is 7.215 times larger than that of the dodeca-
hedron.

To illustrate this expansion—contraction motion of the dodecahedron, we calculated the coordinates of
the vertices of the pentagons as functions of angle o, and produced a series of snapshots of the expandable
model for « varying from =/2 to 0 (Fig. 5).

Useful information can also be obtained by investigation of the coupled translation and rotation of a
pentagon, that is, by determining the relationship between f§ and R, where f§ denotes the angle of rotation of
a pentagon. Consider again the projection of the network in Fig. 3 on the unit sphere of centre O. Then, the
sine rule for the spherical triangle BXS gives that

sin /BXS _ sin /XSB
sinBS  sinBX
Since /XSB = o, /BXS = f, sinBS = a/(2R), sin BX = a/(2Rsin(n/5)), from (7) we obtain:

sinf 1\’
cosa:\/l—(m) . )

(7)
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Fig. 5. Snapshots of the expansion process viewed down a C, axis of the dodecahedron.

The positive square root is taken, as this corresponds to the physically accessible configurations. Substi-
tuting (8) into (6) we can express R/a as a function of . In Fig. 6, R/a is plotted versus /3 (the dashed line
results from taking the negative square root in (8)). At f = —n/5, the configuration is closed (the dode-
cahedron); at f =0 it is fully expanded (truncated icosahedron); at = n/5 the configuration is closed
again, but it is an enantiomorphic counterpart of the initial configuration (mirror image of the original). It
is interesting to see that the curve in Fig. 6 has vertical tangents at points f = +n/5, as this means that the
model can expand infinitesimally without rotation of the pentagons. The horizontal tangent at § = 0 shows
that radius R has its maximum there, and at this point the pentagons can rotate infinitesimally without
changing R.

2.3. Generalizations

The construction given for an expandable dodecahedron can be straightforwardly extended for all five
Platonic polyhedra. All five of them have C, axes passing through edge midpoints, so hinged links com-
posed of rigid rectangles and triangles which connect adjacent face prisms can be introduced. With ap-
propriate changes to allow for the detailed geometry at the hinges, all the foregoing arguments for the
expandable dodecahedral model apply to expandohedra based on the Platonic polyhedra. In particular, a
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Fig. 6. Variation of the relative circumradius (R/a) with angle of rotation of the pentagons (f8). The dashed line continues the solution
of (8) into the non-physical regime where prisms would intersect.

finite expansion mechanism exists for all of them. In this way a whole class of expandable regular polyhedra
(expandohedra) can be defined.

The expandohedra of particular interest are those whose parent polyhedra have trivalent vertices: tetra-
hedron, octahedron and the already investigated dodecahedron. In these expandohedra, hexagons appear
between faces as a consequence of the expansion. The expandable tetrahedron/cube expands from a regular
tetrahedron/cube to a semi-regular truncated tetrahedron/octahedron. The expandable octahedron and
icosahedron have more complicated motions, associated with the octagons and decagons that appear
during expansion.

Further generalizations of the class of parent polyhedra are possible. One such takes the set of Archi-
medean polyhedra, which are composed of regular faces. The connecting triangle-rectangle—triangle links
no longer all have the C, symmetry present in the Platonic models. With appropriate modification of the
angles of the triangular plates, the expansion property can be retained, but the planarity of the ‘empty faces’
of the expanded structure may be lost. Other generalizations are also possible.

The following section treats an abstract version of the physical model, using symmetry and combina-
torial arguments to understand some of the general features of the mechanisms of expandohedra.

2.4. Further degrees of freedoms

2.4.1. The mobility criterion

In Section 2.2, it was shown that the expandable dodecahedron is a finite mechanism and hence has at
least 1 degree of freedom. However, the question arises whether there are additional degrees of freedom of
the expandable dodecahedron. In kinematics, the Kutzbach measure gives a lower bound to the degrees of
freedom (Hunt, 1978). Each separate rigid body has 6 degrees of freedom, and each revolute hinge con-
nection has 1 degree of freedom, as at a hinge 5 degrees of freedom are lost, additionally the whole assembly
has a rigid motion with 6 degrees of freedom that should be subtracted when counting the degrees of
freedom of a hinge-connected mechanism. If the assembly is composed of b rigid bodies and % hinges, then
the minimum number of degrees of freedom (the Kutzbach measure) f is
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f=6b—5h—6. 9)

The dodecahedron has 12 prisms, 30 rectangles and 60 triangles, that is, » = 102. We can associate 10
hinges to each pentagonal face. Thus, # = 120. From (9), f = 6. This implies that the expandable do-
decahedron has at least 6 degrees of freedom. It is not known whether each degree of freedom is finite, and
other degrees of freedom, with associated states of self-stress may also be possible, by analogy with the
extended Maxwell rule (Calladine, 1978). Section 3 will show that symmetry arguments can further elu-
cidate the nature of these mechanisms; it will turn out that the 6 Kutzbach degrees of freedom are additional
to the finite mechanism of Section 2.2.

2.4.2. Face mechanisms

The motion of the finite mechanism described in Section 2.2, involves, at a general point, all pentagonal
faces simultaneously and symmetrically translating along, and rotating about, radial axes. There are
however, special configurations: when the model is fully closed (Fig. 6, f = +n/5) the faces simultaneously
translate, without rotation; when the model is fully open (Fig. 6, f = 0) the faces simultaneously rotate,
without translation.

Experimentation with the fully closed physical model shows that, in addition to the finite mechanism
that involves simultaneous translation of the faces, there are other, infinitesimal, mechanisms, where each
face translates independently. Similarly, in the fully open state, there are infinitesimal mechanisms where the
faces are able to rotate independently. The question arises: does each face have an independent infinitesimal
mechanism at any stage of the expansion, involving coupled rotation and translation? The answer is not
easy to determine experimentally for a general configuration, but the existence of these face mechanisms can
be shown geometrically for the expandohedron based on the dodecahedron, as well as other cases.

Fig. 7 shows a linkage between faces of the expandohedron based on the dodecahedron; the two triangles
and the rectangle featured in Fig. 2. Two features of the motion of this linkage will be shown: first, that with
EF fixed, it is possible for B to move arbitrarily in the plane perpendicular to BE; second, that it is possible
for the direction of line 4B not to be altered by this arbitrary motion. These features will prove to be
sufficient to show the existence of face mechanisms.

To show that the features of the motion of the linkage exist, we set up the following geometry. Consider
unit vectors ef, ed, eb, bc, and ba that lie parallel to the lines EF, ED, EB, BC and BA, respectively. Also
consider unit (infinitesimal) rotations R., R.; and R, about the lines EF, ED and BC, respectively. (We note
that, as we are considering only infinitesimal motions, we can sum rotations in the same way that we
sum vectors.) By the construction of the expandohedron, at any point in the expansion, BC and ED are
parallel,

ed = b, (10)

E

Fig. 7. The linkage between two faces.
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whereas no two of EB, ED, EF are ever parallel,

eb # ed # ef # eb. (11)
As ABC and DEF are parallel planes, it is possible to write
ab = Ced + Yef, (12)

where scalars ¢ and  depend on the current geometry, but i # 0, as this would imply that 4B and BC were
parallel.

The first feature of the motion of the linkage can now be shown straightforwardly. Consider line EF as
fixed. By (11), rotations about EF and ED will allow B to move arbitrarily in the plane perpendicular to BE.
In general, the rotation about the point £ will be given by

RE = XRef +yRed7 (13)

where x and y are arbitrary scalars.

The arbitrary Rz of (13) will in general lead to the rotation of the line 4B so that it is no longer parallel
with ab. To show the second feature, that 4B may remain parallel to ab, requires that an additional rotation
Ry, 1s able to correct for this. Consider a total rotation of line AB

Ry = xRef + YReq + zZRp,.. (14)
If we choose z = &x/y — y, (14) becomes

1
Rlol = J [x(éRbc + l,bRef) + lpy(Red - Rbc)] . (15)
Substituting Ry = Ry, and Ry = ERoq + YRy, gives
x
Rtot = ERabo (16)

Thus the total rotation of the line 4B is about ab, and AB remains parallel with its initial direction.

Now consider a pentagonal prismatic face surrounded by five linkages. The features of the linkage,
described above, imply the following, when all five linkages are considered together: (i) the distances be-
tween inner vertices connected by a linkage must be preserved; (ii) within this constraint, any motion that
leaves the face parallel with its initial position is allowed. As the linkages around any face are arranged with
C;s symmetry, (i) and (ii) will always allow a local infinitesimal motion for each face independently, at a
general configuration involving rotation about, and translation along, the local symmetry axis. Hence, the
existence of face mechanisms has been shown for the expandohedron based on a dodecahedron.

The arguments above can be extended to show the existence of a face mechanism for almost any regular
polygonal face of any expandohedron. The only restriction is that the face must not be parallel with an
adjoining face, as (11) must remain true. With this restriction, a face mechanism must be possible for any
triangular face; parallel motion of the face allows four local freedoms, while the length constraints between
vertices only gives three constraints.

2.4.3. Edge mechanisms

In the fully open configuration, the triangular and rectangular plates constituting the connecting link
between two face prisms become coplanar. In this special geometrical situation, an additional edge
mechanism is possible, as shown in Fig. 8.

2.4.4. Geometry-based count of mechanisms

For the dodecahedron, the current section has found various mechanisms for a general configuration.
Geometric reasoning showed the existence of a single breathing mechanism. Mobility counting showed that
the number of mechanisms was at least six. Consideration of face mechanisms detected 12 degrees of
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C D
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A F

Fig. 8. The infinitesimal edge mechanism for the fully open configuration of an expandohedron. (a) Side view of starting configuration.
(b) Displaced configuration viewed down the radius from the edge mid-point to the centre of the polyhedron. Points C and D can move
infinitesimally in unison out of the plane containing the triangular and rectangular plates, without moving the points 4, B, E and F that
define the hinges to the prisms.

freedom. In the fully open configuration, there are also 30 edge mechanisms, that are independent of the 12
face mechanisms, and hence there are at least 42 degrees of freedom. The degree to which these various
counts are independent will be established in the following sections.

3. Symmetry analysis
3.1. The mobility of an expandohedron

In the language of polyhedra and related combinatorics, the general construction can be described as
follows. Call the parent polyhedron P. The expandohedron E is constructed from the elements of P as
shown schematically in Fig. 9. First, the faces of P are separated: E contains a distinct rigid prism for each
face of P, the same in size and shape as the original (Fig. 9(a)). Each edge of P is thereby doubled, with the
edge ab, that was common to two faces now replaced by edges «'d’ and a”b” of the separated faces (Fig.
9(b)). The rigid face prisms are now connected by a triple of rigid plates, hinged at o', a”, ", b" (Fig. 9(c)),
one such assembly for each original edge. The choice of hinge points for the connecting triple (i.e. the choice
to connect &' ...b", or a”...b") is made cyclically on some starting face, and then propagated consistently
over the whole set of face prisms.

By construction, E consists of f + 3e rigid bodies and 4e hinges, where /" and e are the numbers of faces
and edges of P, which are related to v, the number of vertices of P, by the Euler relation for spherical
polyhedra, v + f = e + 2. It is also useful to define a contact polyhedron C, derived from E by taking every
rigid body in E as a vertex of C, and every linkage between rigid bodies (in this case every hinge) as an edge
of C. C has 4e edges, and f + 3e vertices, of which 3e are divalent. Strictly speaking, as it has divalent
vertices, C is a spherical map rather than a polyhedron.

The construction of E preserves all proper (rotational) symmetries that were present in P, but removes
any improper (reflection, rotation-reflection, inversion) symmetries. Hence, E is a chiral object. At all
positions short of full opening, £ has a maximal symmetry defined by the full rotational subgroup of the
point group of P itself. When F is fully opened, each connecting triple will be linear and can be taken as a
composite edge of the leapfrog of P. If P is achiral, E then regains the full symmetry of P and continuation
of the finite ‘opening’ motion from this achiral configuration will start to close the structure along a mirror-
image path.

It is useful to establish some notation for the subsequent discussion of mobility and symmetry. In G(E),
the point group of E, I'r and I'y are the three-dimensional representations of translations along, and ro-
tations about the Cartesian axes. In the same group, I',(x,X) is the permutation representation of struc-
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(a) (b)

(d)

Fig. 9. (a) The original polyhedron has an edge ab common to two faces; (b) the expandohedron has two copies of ab; (c) the edge ab is
replaced by a triple of rigid bodies, hinged at &', a”, ", b”; (d) a consistent choice of connecting triples is made cyclically on one face
and then propagated over P to produce the full structure of the expandohedron E.

tural components of x of X, with characters defined by the number of x that remain unshifted under a given
operation, and I'j(e,X) and I'| (e, X), represent sets of vector respectively along and across edges of X, all
orthogonal to the radius vector of the edge midpoint. As the point group that is being used, G(E), is always
that of a chiral polyhedron, the distinction between I'y and I'; and between || and L edge vectors is lost.
Likewise, the pseudo-scalar representation I',, which is defined to have character +1 under proper and —1
under improper operations, reduces to the totally symmetric representation, Iy, in these cases. For the
chiral polyhedra and assemblies under study here, we will use

I.(eX)=T(e,X)=T(e,X), Iy.=Tr=1Ix, T =T, (17)

The symmetry version of the general mobility criterion for assemblies of rigid bodies (Guest and Fowler,
2003) is

I'(freedom) — I'(constraints) = I'(m) — I'(s). (18)

Here, I'(freedom) is the representation of the 6N — 6 degrees of freedom of the set of N unlinked rigid
bodies, I'(constraints) is the representation of those degrees of freedom removed by the constraints imposed
by the links between the rigid bodies, and I'(m) and I'(s) are the representations of the set of mechanisms
and the states of self-stress of the linked assembly, respectively.

The relative freedoms span the translations and rotations of the N bodies, minus the overall rigid-body
motions of the assembly. Thus

I'(freedom) = (I'y + I'y) x I'(bodies) — 't — Iy, (19)

where I'(bodies) is the permutation representation of the bodies. In the present case, the body centres
comprise: one for each face of the parent polyhedra, one at the midpoint of each old edge of the parent
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polyhedron, and a pair symmetrically disposed about that midpoint. In terms of the faces and edges of P,
therefore,

I(bodies) = I',(f,P) + 2T, (e, P) + Iy (e, P), (20)

where the vector representation I'j (e, P) arises from counting the symmetrical pairs of bodies as sums of in-
phase (I';(e,P)) and out-of-phase (I'j(e,P)) combinations on each edge. All representations are to be
understood as representations in G(E), rather than the full group G(P), even when they refer to elements of
P, and so, for example, I'|(e, P) can be replaced by I'_.(e, P) in (20).

The form of I'(constraints) depends on the mode of linkage. Rigid gluing would remove freedoms
corresponding to the relative rotation and translation of each glued pair, and hence contribute constraints
spanning I'j(e,C) x (I'r + I'g) = 2I'_.(e, C) x I'y,.; replacement of rigid glue by the revolute hinges used in
E restores freedoms spanning I'; (e, C) = I'_.(e, C). By construction, the contact polyhedron C corre-
sponding to E, since both are chiral, has

I'_(e,C) = 2I'_.(e, P) + 2T, (e, P), (1)
and

I'(constraints) = {2I"_ (e, P) + 2T's(e, P)} x {I'y. — I} (22)
From which, combining (20)(22),

[(m) — I'(s) = 2{T(f,P) — (e, P)} X 'z +2{'s(e,P) + I'_.(e,P)} — 2T'.. (23)

The character of (23) under the identity recovers the count of the excess of mechanisms over states of self-
stress i.e. m —s = 4e — 6v + 6.

An alternative form of (23), also valid for all E, can be derived. As we are working in the group G(E),
which contains only proper operations, the symmetry extension of the Euler theorem (Ceulemans and
Fowler, 1991) reduces to

I,(f,P)=T_(e,P)+2Iy— I',(v,P), (24)
from which
I'(m)—I'(s) =2{I,(e,P)+TI_(e,P) —I;(v,P) X I'yyy + Ty} (25)

The RHS of (23) and (25) can be calculated directly for any given parent P. For the five Platonic and 13
Archimedean solids, the results are shown in Table 1. The fact that all trivalent polyhedra in the table have
m — s = 6, and that these extra mechanisms transform as 27I,,. is not accidental, as it can be proved that
I'(m) — I'(s) is equal to 2T, for all £ derived from trivalent parents.

One proof proceeds as follows. For trivalent parents P, a general property of the vertex representation
for trivalent polyhedra (Ceulemans and Fowler, 1991) reduces in G(E) to

I'y(v,P) X I'y,, = I'y(e,P)+ I'_ (e, P), (26)
and so
E(P),P trivalent :  I'(m) — I'(s) = 2@ y. (27)

A simpler proof is by characters. Let y,(R) and y_, (R) be the characters under operation R of I',(e, P) and
I'_ (e, P), respectively. In the chiral group G(E), an edge of P either lies on no non-trivial symmetry element
or is bisected by a C, axis. The contribution of any one edge to y,(R) + x_ (R) is (+1) + (=1) for such a C,
operation, (+1)+ (+1) for the identity, and (0) + (0) otherwise. Thus, I';(e, P) + I'_ (e, P) has character 2e
under the identity and zero otherwise. Similarly, a vertex of P either lies on a Cs axis or is on no non-trivial
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Table 1

Mobility of expandohedra based on Platonic and Archimedean polyhedra of degree d, as predicted by the symmetry-extended version
of the mobility criterion. m and s are the counts of mechanisms and states of self-stress, respectively, and I’ is a representation in the
point group G(E) of the chiral expandohedral structure

P Ir(pP) I'(E) d m—s Iy, I'(m) —I'(s)

Tetrahedron T, T 3 6 T 2T

Octahedron 0O, (0] 4 18 Ty 24, +2E + 2Ty + 2T,

Cube Oh 0] 3 6 T 1 2T]

Icosahedron I, I 5 54 Ty 2T, +4T, +4G + 4H
Dodecahedron I 1 3 6 T 2T,

Truncated tetrahedron T, T 3 6 T 2T

Truncated cube 0O, (0] 3 6 T 2T,

Truncated octahedron Oy, (0] 3 6 T 2T

Truncated dodecahedron I, 1 3 6 T 2T,

Truncated icosahedron I, I 3 6 Ty 2T,

Cuboctahedron Oy (0] 4 30 T 24, + 2E + 4T, + 41,
Icosidodecahedron I, I 4 66 T 24 + 4T, + 2T, + 4G + 6H
Rhombicuboctahedron Oy (0] 4 54 T 24, + 24, + 4E + 8T, + 6T
Rhombicosidodecahedron I, 1 4 126 T 24 + 8Ty + 67> + 8G + 10H
Truncated cuboctahedron 0O, (0] 3 6 T\ 2T,

Truncated icosidodecahedron I, I 3 6 T 2T,

Snub cube o (0] 5 102 T 44, + 44, + 8E + 14T, + 12T,
Snub dodecahedron 1 I 5 246 T 44 + 14Ty + 12T, + 16G + 20H

symmetry element of G(E). As y,,.(Cs) =0, the vertex representation I';(v,P) x I'y. for trivalent P has
character 3v under the identity, and zero otherwise. The vertex and edge terms on the RHS of (25) therefore
cancel out, recovering (27).

This explains the results for the trivalent Platonic polyhedra: for any trivalent parent polyhedron, the
excess of mechanisms over states of self-stress is six, is independent of the details of P, and spans
the symmetry 2I',,.. In particular, this implies that the leapfrog expandohedron derived from any one of the
infinite class of fullerene polyhedra has six mechanisms that transform as translations, or equivalently
rotations.

The argument can be extended to show that an expandohedron E based on any parent polyhedron P has
at least these mechanisms. Consider a decoration of the edges of P in which two marks are placed sym-
metrically on each edge, one close to each end vertex. The permutation representation of the set of marker
points is then I';(e, P) + I'_. (e, P). However, the marks also form cycles around the vertices, with a set of d
points surrounding a vertex of degree d, and so their permutation representation contains at least the
symmetries of a scalar and two tangential vector combinations at each vertex, i.e. I';(v,P) X I'y,,. The
composite representation I';(e, P) + I'_.(e,P) — I';(v,P) x I'y, is therefore a reducible representation with
non-negative contributions from all the irreducible representations of G(E), and hence it is possible to state,
with a slight abuse of set-theory notation that

all parent P:  {I'(m) — I'(s)} D 2@, (28)

where D is used here, and subsequently, to denote that I'(m) — I'(s) must contain at least 2I',,,. For non-
trivalent polyhedra P, the RHS of (25) is no longer independent of P, but can always be written as 2I'y,, plus
a function of the vertices of P.

The results for the mobility of expandohedra based on all the Platonic and Archimedean polyhedra are
given in Table 1.
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3.2. Symmetry of face mechanisms

It was shown in Section 2.4.2 that there was a local infinitesimal mechanism associated with each of the
prisms of an expandohedron; if P has f faces, there will be f such mechanisms. This set of mechanisms will
transform under the operations of G(E) in the same way as the faces of P, and hence the character of this set
of mechanisms will be I',(f, P). It is thus possible to state that

I'(m) D I.(f,P), (29)

i.e. that the representation spanned by the mechanisms of E includes that of the faces of P. It is, of course,
not possible to say that I',(f, P) is the complete set of infinitesimal mechanisms.

3.3. Predictions for mechanisms and states of self-stress

The results from the two previous sections can be combined to deduce a minimal set of mechanisms and
states of self-stress that must be present. For the case when P is one of the trivalent Euler polyhedra, a
remarkably simple result is found by combining (27) and (29),

E(P),P trivalent :  I'(m) D I'x(f,P) U{lx: + Iy} (30)

For the Platonic solids, however, the permutation representation for the faces is that of a single orbit, and
each happens to contain exactly one copy of I',,., (all orbits of more than four objects generate at least one
copy of Iy, but the larger orbits contain two or more copies—it so happens that these larger orbits
correspond to Archimedean rather than Platonic solids) and hence

E(P),P trivalent, Platonic:  I'(m) D I';(f,P) + I, (31)
and, as for this case I'(m) — I'(s) = 21y,
E(P), P trivalent, Platonic:  I'(s) D I'4(f,P) — I'ys. (32)

Section 4 will show that the RHS of (31) and (32) are in fact the complete sets of mechanisms and states of
self-stress for the expandohedra based on trivalent Platonic solids.

3.4. Predictions for m and s at the fully open configuration

It was shown in Section 2.4.3 that when the set of plates constituting a link between prisms becomes
planar, an extra edge mechanism is introduced. For the expandohedra derived from Platonic polyhedral
parents, all links will become planar simultaneously in the fully open configuration. The symmetry spanned
by the e edge mechanisms is that of a set of translations across the edges of E, or equivalently along the
edges of P, and hence is equal to I' (e, P) in G(E), as defined in (17).

It is thus possible to state that the set of mechanisms of E at the fully open configuration includes
I'_(e,P)

E(P),P trivalent,open : I'(m) D I'_(e,P). (33)
Combining (33) with (30) then gives, for the total set of mechanisms
E(P),P trivalent,open :  I'(m) D {I',(f,P)+I'_(e,P)} U{Il. + T}, (34)

and, as I',(f,P) D Iy, and I'_ (e, P) D Iy, for the trivalent Platonic parents in the symmetry group G(E),
the minimal set of mechanisms in the fully open configuration is

E(P), P trivalent,open :  I'(m) D {I',(f,P) + I _(e,P)}, (35)
which is of dimension f + e = 2v + 2.
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Note that at the fully open configuration the structure actually has the symmetry G(P), which, for
achiral P includes G(E) as a rotational subgroup.

4. Numerical modelling
4.1. Description of the model

This section will describe a numerical model of the expandohedra based on the dodecahedron, tetra-
hedron and the cube that confirms the analysis in the previous sections. It shows that in general configu-
rations there are no additional infinitesimal mechanisms beyond those predicted by (31). In the fully open
configuration there are no additional infinitesimal mechanisms beyond those predicted by (35).

A numerical model could be set up most straightforwardly using a simple bar-and-joint assembly (see
e.g. Calladine, 1978; Pellegrino, 1993). Here the problem is more difficult because it is necessary to model a
series of rigid bodies, while at the same time preserving the symmetry of the assembly for a later symmetry-
adapted analysis. Hence, the model incorporates additional vectors and constraints chosen to describe the
planarity of connecting plates and the geometry of the triangular plates hinged to the prisms. Similar
extensions of bar and joint models are described in Guest and Pellegrino (1994), and Kovdcs et al. (1997).

Expandohedra consist of three different elements, prisms, rectangular plates, and triangular plates,
hinged together by revolute hinges. The different elements were modelled as follows:

(1) The model for an n-gonal prism is shown in Fig. 10(a) for the particular case of n = 3. It consists of
(n + 2) nodes, and 3n bars, arranged to form an n-gonal bipyramid, and is statically and kinematically
determinate. The axial vertices of the bipyramids define vectors u perpendicular to the n-gonal faces of
the prism. These vectors are used to define the hinge constraints at the connection to the triangular
plates.

(i) The model of the rectangular plate is shown in Fig. 10(b). It consists of a bar linking two existing
nodes, and a unit vector v, perpendicular to the bar, that is defined to lie in the plane of the plate.

(®)

(©

Fig. 10. Modified bar and joint models of: (a) face prisms; (b) rectangular plates; (c) triangular plates.
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Fig. 11. Structure of the compatibility matrix C for the expandable dodecahedron. Each symmetry block is labelled by irreducible
representation, size, rank (r), number of mechanisms (m), and states of self-stress (s).

(ii1) The model of the triangular plate is shown in Fig. 10(c). It consists only of a constraint that the angle
between the two hinges on the plate is preserved.

4.2. Symmetry-adapted analysis

The model described in Section 4.1 allows a compatibility matrix, C, to be defined and used to find
possible infinitesimal mechanisms of the structure (the nullspace of C), and any overconstraint, corre-
sponding to states of self-stress (the left-nullspace of C). See e.g. Pellegrino and Calladine (1986) for more
details. When the expandohedron is highly symmetric, it is instructive to perform the decomposition of C in
a symmetry-adapted manner, as described by Kangwai and Guest (2000). The constraints and freedoms are
written using a symmetry-adapted coordinate system, and this leads to the matrix C taking on a block-
diagonal form, with each block corresponding to a component of an irreducible representation of G(E).

4.3. Results

4.3.1. The expandable dodecahedron

The results presented here were calculated at two configurations: the fully closed configuration, as
representative of a general point in the expansion, and the fully open configuration, when additional rank-
deficiency appears in the matrix C.

For the dodecahedron, each of the prisms has n =5, hence 7 nodes, and 21 freedoms, and 15 bars
forming 15 constraints. For the entire structure, there are: 12 prisms, giving 252 freedoms and 180 con-
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Table 2
Results of symmetry-adapted matrix analysis for the expandohedra based on the three trivalent Platonic polyhedra in both the closed
and fully open configurations

Parent polyhedron Block Block size  General configuration Fully open configuration
Lo (f,P), Number of Number of mech-  Number of states Number of mech-
I-(e,P) states of self-  anisms + rigid- of self-stress anisms + rigid-
stress body motions body motions

Tetrahedron
A+T, A 6x6 1 1 1 1
2T E 12x12 2x0 2x0 2x0 2x0

T 16x20 3x0 3x4 3x1 3x5

Total 66x78 1 13 4 16
Cube
A +E+ T, Ay 6x6 1 1 1 1
A+E+2T+ T A 5%5 0 0 1 1

E 11x11 2x1 2x1 2%x2 2x2

T 16x20 3x0 3x4 3x1 3x5

T, 17x17 3x0 3x0 3x1 3x1

Total 132x144 3 15 12 24

Dodecahedron

A+T+T,+H, A 6x6 1 1 1 1

2T + 2T, +2G +2H T 16x20 3x0 3Ix4 3x1 3x5
T 16x16 3x1 3x1 3x3 3x3
G 22x22 4x0 4x0 4x2 4x2
H 28 %28 S5x1 Sx1 5x3 5x3
Total 330x342 9 21 36 48

straints; 30 rectangular plates, giving 90 freedoms, and 90 constraints; 60 triangular plates, giving 60
constraints. Thus, in total, there are 342 freedoms, and 330 constraints. Altogether, there are 12 more
freedoms than constraints, and thus there are 12 independent mechanisms by which the structure can move.
However, we know that 6 of these will be rigid-body motions, leaving 6 internal mechanisms, in agreement
with the mobility count of Section 2.4.1.

Singular-value decomposition of the matrix C showed a rank-deficiency of 9. This gives 21 mechanisms,
and 9 states of self-stress. Block-diagonalization of C (see Fig. 11) shows that of these mechanisms, there
are 15 that are not rigid body motions and are distributed amongst the different irreducible representations
of the icosahedral group as follows:

I'm)=A4+2T'+ DT+ H. (36)
This is exactly as predicted from the sum of the face representation of the dodecahedron,
I(f,E)=4+ T+ +H, (37)

and the translational representation I'y,, = 7.
In the fully open configuration of the expandable dodecahedron, the internal mechanisms span

[(m)=A+3T +3T+2G+3H (38)

in the group G(E) = I. This again is exactly as predicted; (38) is from the sum of the face representation of
the dodecahedron (37) and the representation of edge vectors
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4.3.2. Trivalent Platonic expandohedra: summary

Table 2 summarises the matrix analysis for the three expandohedra based on trivalent Platonic parents.
In both general and fully open configuration, the numbers and symmetries of the mechanisms and the states
of self-stress are in full agreement with the predictions embodied in the expressions (31), (32) and (35).
Explicitly, the symmetry expressions give: for the tetrahedron I'(m) is 4 4+ 2T in the general configuration,
and 4 + 37 in the fully open configuration; for the cube I'(m) is A; + E + 2T in the general configuration,
and 4, + 4, + 2E+ 3Ty + T» in the fully open configuration. For each of the three expandohedra, the
mechanisms in the general configuration are accounted for by the face mechanisms plus a constant set of
three mechanisms with the symmetry of the translations. In the fully open configurations, the face and edge
mechanisms account exactly for the computed results.

5. Conclusions

This paper has used a combination of geometry, symmetry and numerics to provide a detailed under-
standing of the kinematics of expandohedra; each of these techniques makes an essential contribution to the
paper.

The original expandohedron (Kovéacs and Tarnai, 2000) was designed to exhibit a finite breathing
motion as a physical model of the experimentally observed swelling of viruses. This key feature escapes
elementary counting of mobility, but is revealed by the symmetry analysis to be a totally symmetric
combination of face mechanisms.

The numerical calculations in Section 4 detect all possible infinitesimal motions, and in particular finds
the expected totally symmetric breathing mechanism. However, these numerical methods alone cannot
establish the finite character of the breathing motion because of the presence of states of self-stress. In
particular the method described by Kangwai and Guest (1999) is not applicable, because an equisymmetric
state of self-stress has the potential to stiffen the breathing mechanism. However, the geometric arguments
of Section 2 do establish the breathing motion’s finite character. Experimentation suggests that the other
mechanisms detected are not finite; any attempt to displace the physical models in these directions ap-
parently leads to locking of these mechanisms.

Finally, it should be noted that the experimental observations on viruses show a more complex double
link between adjacent morphological units (Speir et al., 1995); these links pair vertices and edge mid-points
on adjacent prisms. The expandable dodecahedron can be adapted to reproduce this feature, but the
breathing motion then requires the links to have an additional twisting degree of freedom. For example,
four plates connected by revolute hinges, where the central hinge is perpendicular to adjacent hinges, could
form the links. This new expandable dodecahedron behaves similarly to the single-link version, with a
smaller range of expansion. Many other generalizations are also possible.
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